CDC PUBLIC HEALTH GRAND ROUNDS

Working to Eliminate Measles Around the Globe

June 16, 2015

The Measles \& Rubella Initiative and Partnerships for Elimination

James L. Goodson, MPH
Senior Measles Scientist
Accelerated Disease Control and
Vaccine-Preventable Diseases Surveillance Branch Global Immunization Division

Center for Global Health

Mac

Measles Virus

\square RNA virus
> Family: Paramyxoviridae
> Genus: Morbillivirus
\square Humans are the only reservoir
\square Airborne transmission via aerosolized respiratory secretions from coughing or sneezing

\square After 7-21 day incubation period, clinical symptoms develop
\square Accompanied by immunosuppression, often leading to secondary bacterial infections

MEASLES DISEASE

\square Highly contagious
\square Vaccine preventable
\square Typically occurs in childhood
\square Classic rash and fever clinical presentation
\square Severe complications: pneumonia, diarrhea, encephalitis, death
\square Case-fatality ratio: 0.1\%-10\%

Top Ten Causes of Death Worldwide in Children Under 5 Years, 2000

Measles is Highly Contagious and Prevented by Vaccination

\square Safe and highly effective vaccine
> Licensed in 1963
$>$ Requires cold chain for storage
\square Immunity and vaccination coverage needs to be high
$>$ Over 90\% to interrupt transmission
 and prevent epidemics
\square WHO recommends 2 doses for children
>2 doses protects $97 \%-99 \%$ of children
>1 dose protects

- 85% at 9 months
- $\geq 95 \%$ at 12 months

Efforts to Eradicate Smallpox and Polio Support Measles Elimination

\square Smallpox (achieved)
$>$ Integrated measles control efforts in 20 West Africa countries
$>$ Contributed to WHO's Expanded Program on Immunization (EPI)
$>$ Lives have been saved and resources are able to be directed to other public health priorities
\square Polio (nearly there)
$>$ Infrastructure to eradicate polio designed to be integrated with activities to eliminate measles
$>$ Challenges (e.g., insecurity) have delayed reaching goal
$>$ Lessons learned from polio can be transferred to MR eradication
$>$ Much harder than anticipated, but worth the investment
$>$ The POLIO ENDGAME has begun and in countries that have eliminated polio, assets are being transitioned

"Measles eradication should be done." World Health Assembly, 2011

PAHO Goal: The Americas

Global Measles Vaccination Targets by 2015

1. Increase prevention - Increase measles vaccination coverage for first dose (MCV1)
$>$ At least 90% nationally and at least 80% at district levels
2. Decrease disease - Reduce reported incidence of measles to fewer than 5 cases per million population
3. Decrease deaths - Reduce measles mortality 95\%, based on number of deaths estimated in 2000

Global Vaccine Action Plan (GVAP) Measles \& Rubella Initiative Goals

\square Use combined measles and rubella vaccine
\square Eliminate measles and rubella in 5 of 6 WHO regions by 2020

Global Vaccine
Action Plan
2011-2020

The vision

for the Decade of Vaccines (2011-2020) is of a world in which all individuals
and communities enjoy lives free from vaccine-preventable diseases.

SumBulle
Dr. Selt Berkley
Chief Executive Officer
GAVI Alliance
 President
Global Development Program Bill \& Melinda Gates Foundation

> Inlehan

Dr. Margaret Chan
Director General
World Health Organization
Qotanci, ह1
Dr. Anthony Fauci
Director
US National Institute of Allergies
and Infectious Diseases

क्ष

Ms. Joy Phumaphi
Executive Secretary
African Leaders Malaria Alliance

Worldwide Measles First-Dose (MCV1) Vaccination Coverage Stagnating

MCV1 Vaccination Coverage by WHO Region

EMR: Eastern Mediterranean region
WPR: Western Pacific region

SEAR: South-East Asia region
EUR: European region

Measles First-Dose Vaccination (MCV1) Coverage by Country - Goal is 90% or Higher

AFR: African region
AMR: Region of the Americas AMR: Region of the Americas EUR: European region
WHO/UNICEF coverage estimates 2013 revision, July 16, 2014

EMR: Eastern Mediterranean region
WPR: Western Pacific region

Vaccination Campaigns Are Effective But Sustained Efforts Are Essential

Measles and rubella monthly country reports to WHO, as of April 20, 2015

Reported Cases of Measles Drop as Measles Second Dose (MCV2) Coverage Increases

[^0]
Implementing Measles Second Dose (MCV2)

\square In 2013, global coverage of MCV2 was only 53\%
\square Increasing vaccination efforts can increase two-dose coverage
$>$ Routine Immunization (RI) practices

- As children are born and grow
$>$ Supplementary Immunization Activities (SIA)
- Catch-up campaigns to reach large populations and different at-risk age groups
- Opportunity to provide additional services beyond immunizations

Introducing Measles Second Dose (MCV2) into Routine Immunization Schedule

\square Each year, more countries introduce MCV2 into RI schedule
\square Establishes child health platform for 2nd year of life \therefore.
\square Opportunity to catch-up other vaccines and offer other services

43 Measles SIAs in 28 Countries Reached Over 210 Million Children in 2014

SIA: Supplemental immunization activities
OPV: Oral polio vaccine
Immunization Vaccines and Biologicals, WHO, as of May 25, 2015

Reduction in Estimated Measles Deaths, 1985-2013

2015 Global Target: Measles mortality reduction of 95\% vs. 2000 estimates

India Retooling to Eliminate Measles and Rubella

\square Strong political commitment
\square Polio sites switching to laboratory-supported measles surveillance
\square In 2010-2011, measles SIAs reached 119 million children
\square In 2016-2018, nationwide MR SIAs will reach 450 million children under 15 years of age

SIA: Supplemental immunization activity
MR: Measles and rubella

Incorporating Lessons and Infrastructure from Polio Eradication Efforts

\square Build on existing infrastructure and investments
\square Build on knowledge gained through polio eradication efforts
> Adapt to areas of insecurity
\square Sustain political leadership and field worker motivation
$>$ Use innovative strategies
\square Ensure management capacity and program accountability
\square Sustain gains to continue improving routine EPI

Supporting What Works to Eliminate Measles and Rubella

\square Secure long-term funding (global and national)
\square Engage communities to reach the underserved
\square Strengthen routine immunizations
\square Integrate surveillance
\square Refine strategies through innovation

We Are Working Towards A World Without Measles!

American
Red Cross

unicef

BILL\&MELINDA
GATES foundation

International Federation
of Red Cross and Red Crescent Societies

IFFm

BD
USAID
FROM THE AMERICAN PEOPLE

Anne Ray Charitable Trust

S SABBIN

THI CHURCH OF

JESUS CHRISI
OF LATIER-DAY SANTS

international pediatric association association internationale de pediatrie asociación Internacional de pediatria

Japan International Cooperation Agency

American Academy of Pediatrics DEDICATED TO THE HEALTH OF ALL CHILDREN

The Role of the Global Measles and Rubella Laboratory Network

Paul A. Rota, PhD

Measles Team Lead,
Measles, Mumps, Rubella, Herpesviruses Laboratory Branch, Division of Viral Diseases,
National Center for Immunization and Respiratory Diseases

Laboratory Surveillance for Measles and Rubella Elimination

\square Competent and sustainable laboratory support for global surveillance
\square Provided by the WHO Global Measles and Rubella Laboratory Network (GMRLN)

Global Measles and Rubella Laboratory Network (GMRLN)

\square Initiated in 2000
\square Built on Global Polio Laboratory Network model
\square Multi-tiered structure
> 3 Global Specialized Laboratories

- CDC, PHE-UK, NIID-Japan
> 14 Regional Reference Laboratories
> 161 National Laboratories

- 586 Subnational laboratories (including 362 subnational laboratories in China)
$\square 7$ Global/Regional Laboratory Coordinators

Strengths of the GMRLN

\square Standardized testing and reporting structure
\square Excellent quality control
\square Timely results that drive public health decision making
\square Alignment with national public health priorities
\square Local lab management and control
\square Integrated testing includes other vaccine preventable diseases
$>$ Measles, rubella, Yellow fever, Japanese encephalitis, rotavirus and hepatitis B

Roles of the GMRLN

\square Confirm cases of suspected measles or rubella
\square Determine genetic relationships of circulating strains
\square Measure population immunity

Laboratory Confirmation of Suspected Measles Cases

\square Distinguish measles and rubella cases from other febrile rash illnesses
\square Detection of measles or rubella specific IgM in a serum sample taken at first contact with patient
\square Detection of viral RNA by RT-PCR

Increasing Workload of the GMRLN

Dr. M Mulders, WHO Headquarters

Genetic Characterization of Measles Viruses to Track Transmission

Map transmission pathways and document interruption of transmission

$\xrightarrow[\text { Importation of genotype B3 }]{\text { Importation of genotype D9 }}$

Global transmission of measles viruses from the Philippines, 2014

Measles Nucleotide Surveillance (MeaNS)

\square Global genetic sequence database for measles
\square Maintained at Public Health England
\square Governance from labs in all WHO regions
\square Over 22,000 sequences in database
> Available to participating labs

$>$ Discussion of open sharing
\square Rapid sequence analysis and strain detection

MeaNS Provides Summaries of the Global Distribution of Measles Genotypes

Distribution of measles genotypes: Mar 2014 to Feb 2015

Confirming Vaccination Coverage

\square Laboratories perform seroprevalence studies to verify vaccination coverage

CDC, Sue Cho

Challenges for the GMRLN

\square Financial sustainability
\square Laboratory network expansion (e.g., India)
\square Introduction of new laboratory methods
\square Sustain and expand quality control program
\square Integration with surveillance for VPDs
\square Development of effective test strategies for low incidence settings
\square Increased workload with national and regional verification of measles elimination

VPD: Vaccine preventable disease

New Technologies on the Horizon

\square New or improved serologic testing methods and assays
$>$ High throughput neutralization
$>$ High throughput seroprevalence
$>$ Point-of-Care (WHO, PHE)
\square New or improved molecular assays
$>$ Whole genome sequencing
$>$ Next generation sequencing (AMD)
\square Vaccine development
> Microneedle patches (GA Tech)

Thanks to the GMRLN and Measles and Rubella Teams at CDC

$12^{\text {th }}$ Annual Global Measles and Rubella Laboratory Network Meeting, September 2014, Istanbul, Turkey

The Elimination of Measles in the Americas

Desirée Pastor, MD, MPH

Regional Immunization Advisor
Pan American Health Organization
Regional Offices for the Americas, World Health Organization

Outline

Update of measles epidemiology in the Americas

2
Most critical challenges for sustaining the gains

Impact of Measles and Rubella Elimination Strategies in the Americas

The Comprehensive Family Immunization Unit (FGL/IM) - Pan American Health Organization, data as of June 8, 2015

Distribution of Confirmed Measles Cases After Interruption of Endemic Transmission

Geographic Distribution of Confirmed Measles Cases In The Americas

The Comprehensive Family Immunization Unit (FGL/IM) - Pan American Health Organization, as of epidemiological week 21, 2015 by second administrative level

First Outbreak in Post Elimination Era with More Than 12 Months of Transmission

Confirmed Measles Cases by Epidemiological Week, Selected States Brazil, 2013-2015

The Comprehensive Family Immunization Unit (FGL/IM) - Pan American Health Organization, as of June 8, 2015epidemiological week 21, 2015 by second administrative level

Characteristics of Measles Outbreaks in the Americas

	USA (2014-2015)	Brazil (2013-2015)
Spread	Rapid spread within US and neighboring countries (Canada, Mexico)	Slow, sustained spread with 'drop by drop' transmission in Pernambuco and Ceará
Genotype	More than one genotype in US and Canada	Single genotype, one outbreak
Outbreak Control	Rapidly controlled	Ongoing outbreak after 24 months
Ages of Cases	USA: 53\% 5-39y and 28\% in <5y	Pernambuco: 48\% <1y Ceará: 28\% <1y and 34\% 15-29y
Case Vaccine Status	More than 80\% unvaccinated	Around 89\% unvaccinated
Barriers to Vaccination	Philosophical or religious exemptions, or too young to vaccinate	Non-eligible for vaccine, limited access to health services, lack of vaccines, limited human resources

Outline

Update of measles epidemiology

 in the Americas2

Most critical challenges for sustaining the gains

Imported Cases Are Biggest Threat to Maintaining Elimination Efforts

Distribution of confirmed measles cases by import status, The Americas, 2011-2015*

[^1]PAHO Measles Eradication Surveillance System and Integrated Surveillance Information System and country reports

Recommendations to Any Person Traveling to Areas with Measles Circulation

PAHO recommends that any traveler over the age of six months be fully vaccinated against measles and rubella, at least 2 weeks before departure.

For the duration of the trip and upon returning, travelers should note any of the following symptoms:

- Fever
- Rash
- Cough, coryza (runny nose), or conjunctivitis (red eyes)
- Joint pain
- Lymphadenopathy (swollen glands)

If travelers suspect they have measles or rubella, they should:

- Remain at their current residence (e.g., hotel or home) except to seek professional health care.
- They should not travel nor go to public places.
- Avoid close contact with other people for seven days following onset of rash.

Ensuring Quality of Surveillance at the Subnational Level

Rate of Suspected Measles/Rubella Cases, Sub national Level, 2013-2014
 Expected rate is 2 or more per 100,000 population

Overcoming Immunity Gaps by Giving MMR2 and DTP4 Simultaneously

MMR2 and DTP4 Reported Coverage in Selected Countries, 2013 \square MMR2 ■DTP4

MMR2: Measles, mumps and rubella, second dose DTP4: Diphtheria, tetanus and pertussis, fourth dose
COL: Colombia PER: Peru ARG: Argentina PAN: Panama MEX: Mexico JAM: Jamaica DMA: Dominican Republic
PAHO-WHO/UNICEF Joint Reporting Form, 2014

Ensuring Second Vaccination Opportunity To Maintain Measles and Rubella Elimination

Challenges to Sustain the Gains

\square Increase quality of MR surveillance indicators to rapidly respond to imported MR cases
\square Increase data analysis at the local level for strengthening MR surveillance
\square Increase MMR1 and MMR2 vaccination coverage
\square Support countries to ensure high quality follow-up campaigns
\square Declare measles eliminated in the Americas by 2016

Measles zero! Thank you!

Email: immunization@paho.org

Web: www.paho.org/immunization Organization mameAmericas

Global Strategy to Eliminate Measles

Peter Strebel, MBChB, MPH
Accelerated Disease Control Leader
Expanded Programme on Immunization World Health Organization

Outline

\square What are the strategies?
\square Why has progress slowed?
\square How can progress be accelerated?

Global Measles and Rubella Strategic Plan

5 Key Strategies:

1. Achieve high population immunity through vaccination

GLOBAL
MEASLES
AND RUBELLA
2. Conduct effective surveillance and monitoring
3. Develop outbreak preparedness and response
4. Communicate to engage public's confidence and build demand
5. Perform research and development to improve program efficiency

Failure to Vaccinate Causes Measles Outbreaks

[^2]2. WHO/HQ monthly measles surveillance data as of May 4, 2015
3. WHO/African Region measles surveillance data as of May 14, 2015
4. MMWR April 2015:64;373-376

21 Million Infants Missed MCV1 in 2013

Global Routine Immunization Strategies and Practices - A Call to Invest in 8 Core Areas

Global Routine Immunization Strategies and Practices (GRISP),
a companion document to the Global Vaccine Action Plan (GVAP), DRAFT June 10, 2015

Monitoring Progress through Regional Verification of Measles Elimination, 2014-2015

WHO Region	Regional Verification Commissions Established	No. of countries	\% of countries
Americas 1	Yes	34	97%
Europe 2	Yes	22	41%
Western Pacific 3	Yes	6	22%
Eastern Mediterranean	No	-	-
South-East Asia	No	No	-
Africa	No	-	-

[^3]
Innovations - Intradermal Patch Vaccination

Measles and Rubella Initiative Management Team

Strategies

Working Groups

Resource Mobilization

Routine Immunization

Strategic Communications

Programme Implementation

Vaccine Supply Coordination

Research and Innovation

5. Research and develop improved vaccination \& diagnostic tools

Critical Shortfall of Funding

\$1.4 billion needed for measles and rubella control, 2015-2020

Implementing Our Plan

$\square 5$ clear strategies to eliminate measles and rubella
\square Cause of recent outbreaks is failure to fully implement the strategies
\square To accelerate progress we need
$>$ Investment in immunization programs
$>$ Verification commissions to monitor progress
> Game-changing solutions
$>$ Effective program management
> Resource mobilization

Regaining Momentum in the Fight Against Measles

\square Measles is preventable through vaccination
\square Combined vaccines make it possible to eliminate rubella and measles
> The Region of the Americas eliminated rubella in April 2015
\square The Global Measles and Rubella Laboratory Network provides valuable surveillance and disease tracking
\square Progress has slowed and gains in some regions have been lost
\square "The best defense against measles is a strong offense." -Walt Orenstein

Thank You

Achieving a world without measles by connecting the dots

[^0]: § Others include Bangladesh, Bhutan, DPR Korea, Maldives, Myanmar, Nepal, Sri Lanka, Thailand, and Timor-Leste MCV1: First dose of measles containing vaccine MMWR 2015;64:613-7

[^1]: $■$ Brazil (2011-2015) $■$ Canada (2011-2015) ■Ecuador (2011-2013) ■ United States (2011-2015) ■Other Countries (2011-2015)

[^2]: 1. Rate per $1,000,000$ population
[^3]: 1. Progress report on Plan of Action for Maintaining Measles, Rubella, and CRS Elimination in the Americas, September 12, 2014
 2. Third meeting of the European Regional Verification Commission for Measles and Rubella Elimination (RVC) November 2014
 3. http://www.wpro.who.int/mediacentre/releases/2015/20150327/en/
